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Abstract: The observed data from various fields are frequently characterized by measurement error and this has been a 
challenging problem to constructing consistent estimators of the parameters in a nonlinear regression model. 
In the study, simulated data under three (3) sample sizes (i.e. 32, 256 and 1024) were used, applying 
Epanechnikov kernel, Gaussian kernel, Wavelet and Polynomial Spline on noisy data. The study revealed the 
performances of denoised nonlinear estimators under different sample sizes and comparison was made using 
the mean squared error criterion. The result of the studies showed that the denoised nonlinear least squares 
estimator (DNLS) is the best under each sample size considered.  
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Introduction 
Statistical estimation can be regarded as a subfield of 
statistics, and lies at the core of a number of areas of 
science and engineering, including data mining, and signal 
processing. Each of these disciplines provides some 
information on how to model data and how best to exploit 
the hidden structure of the model of interest. In this work, 
we are interested in estimating nonlinear regression model 
(Nonlinear Cobb- Douglas production model). In nonlinear 
regression, observational data are modeled by a function 
which contains parameters that are not linear in nature. 
The data consist of independent variables (explanatory 
variables) and their associated observed dependent 
variables (response variables) which may contain 
measurement error or noise.  
Variables are said to be noisy if they are not measured 
correctly because the measurement system generating are 
not perfect. In statistics, an error is not a mistake because 
variability is an inherent part of things being measured and 
of the measurement process. Error-in-variables (EIV) 
model are regression models that account for measurement 
errors in independent variables. Many economic data sets 
are contaminated by the mismeasured variables. The 
problem of measurement errors is one of the most 
fundamental problems in empirical economics. The 
presence of measurement errors causes biased and 
inconsistent parameter estimates and leads to erroneous 
conclusions to various degrees in economic analysis. A 
measurement error is called classical if it is independent of 
the latent true values; otherwise it is called non-classical. 
There have been many studies on the identification and 
estimation of linear, nonlinear, and even non parametric 
model with classical measurement errors (Cheng and Van 
Ness, 1999; Carroll et al., 2006). 
A natural approach to overcome this problem is to apply 
the smoothing techniques to handle the data for proper 
removal of the noisy observation (i.e. denoise the data). In 
statistics and image processing, to smoothen a data set is to 
create an approximating function that attempt to capture 
important patterns in the data, while leaving out noise or 
other fine scale structure or rapid phenomena. Smoothing 
extracts more information from the data as long as the 
assumption of smoothing is reasonable and provides 
flexible and robust analysis. There are several methods of 
smoothing techniques which can be used to screen out 
noise, such as: wavelets, developed by Donoho and 
Johnstone, (1994, 1995a and 1995b). Other methods are 
kernel, polynomial spline, etc. These appear often in 
applied fields such as marketing (Blattberg and Neslin, 

1990), medicine and biology (Aldroubi and Unser, 1996), 
and image processing (Prasad and Lyengar, 1997).  
Measurement errors in the independent variables of linear 
regression models lead to inconsistent coefficient 
estimates. To overcome this inconsistency problem many 
studies on denoisinghas been extended to least squares 
estimator, least absolute deviation estimator and M-
estimator using kernel, wavelet and polynomial spline as 
smoothers. The study carried out by Cai et al. (2000) 
denoised both the dependent and explanatory variables; 
while Cui et al. (2002) suggested denoising only the 
explanatory variables. Furthermore, a series of papers 
(You and Zhou, 2007; You et al., 2009; Zhou and Liang, 
2009) adopted the approach of only denoising explanatory 
variables. Cui et al. (2010) denoised only the explanatory 
variables and showed that the denoised nonlinear least 
squares estimator is not robust to outliers. The study 
carried out by Fasoranbaku and Soyonbo (2015) showed 
that the denoised nonlinear least square estimator under 
the several smoothers (Epanechnikov, Gaussian, wavelet 
and polynomial spline) considered outperforms both the 
denoised nonlinear least absolute deviation estimator and 
nonlinear M-estimator. Soyombo and Fasoranbaku (2015) 
also used the known Epanechnikov Kernel smoother, to 
perform the denoising procedures, carry out simulation 
studies under some settings to determine the performance 
of the denoised non-linear estimators when the parameter 
values are varied. The results show that parameters of non-
linear model are not sensitive and thus have no effect on 
the performance of denoised non-linear estimators. 
For the purpose of estimating the error model, this study 
investigate Cobb Douglas production model in economics. 
The model with additive error is written as: 

tttt uKLP += 32

1
βββ         (1) 

)10(),10(),0( 321 <<<<> βββ  

Where: tP  is output at time t (the real value of all goods 

produced in a period of time) 
Lt is the Labour input (the number of person hours in a 
period of time), Kt is the Capital input (the real value of 
Machinery and Building), β1 is a Constant, (total factor 
productivity), β2 and β3 are the output elasticity of Labour 
and Capital (measure the respective contribution of Lt and 
Kt to the production process) and ut is the stochastic 
disturbance term

 

Suppose that }1:),,{( ntPKL ttt ≤≤ are unobservable 

“true” variables satisfying a nonlinear relationship, 
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measurements of  ),,( ttt PKL  are collected to yield an 

observable data set of }1:),,{( 21 ntyxx ttt ≤≤  i.e. 

the true variables plus additive measurement errors such 
that; 

ttt Lx δ+=1 ,  
ttt Kx ε+=2
 and ttt uPy +=

     
(2) 

Where: tδ  and tε  are measurement errors.  

To be in line with the usual nonlinear model, the model (1) 
becomes: 

tttt uxxy += 32

211
βββ        (3) 

 
In estimating denoised non-linear regression parameters, 
the effect of the sample sizes on denoised estimators has 
not been considered. Therefore, this study would employ 
three different denoised estimators (i.e denoised non-linear 
least square (DNLS), denoised non-linear absolute 
deviation (DNLAD), and denoised non-linear moment 
(DNM)) to estimate non-linear regression parameters 
under three different sample sizes (32, 256, and 1024). The 
goal of this study is to provide best estimator under each 
sample size for particular smoothers. 
 
Materials and Methods 
Denoising procedures 
The basic idea behind smoothing a data set is the creation 
of an approximating function that attempts to capture 
important patterns in the data while leaving out the noise, 
and is also referred to as “denoising”. There are various 
methods to help restore a data set from measurement 
noise. In this study, the following smoothing method are 
used  
Kernel denoising 
In this section, the denoising kernel-type smoothing 
procedure is considered. First, only the x variable is 
denoised. Therefore Kernel-type smoothing procedure for 

the ix  using a weight function is 

∑
=
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 To this end, let 0)(; ≥k be a symmetric kernel 

supported on [-1,1] with ∫− =
1

1
1)( dxxK  for some 

smoothing parameter h ; where x is the value of the 

scalar variable for which one seeks an estimate, while iX  

are the values of that variable in the data. K is a function 
of a single variable called the kernel. The kernel 
determines the shape of the function. The parameter h is 
called the bandwidth or smoothing constant and n is the 
sample size. It is important to note that the bandwidth 
strongly depends on the sample size, so when sample size 
increases, the bandwidth tends to shrink. The bandwidth 
controls the degree of smoothing and adjusts the size and 
form of the function. 

 Also, 
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=
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For the purpose of this study, the two most kernels are 
utilized  
i. Epanechnikov kernel:  

)1,1()1(75.0)( )1(
2 −∈−= ≤ uonIuuK u

     (6) 

ii. Gaussian Kernel: 
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The problem of selecting the smoothing parameter for 
kernel estimation has been explored by many authors and 
no procedure is yet been considered the best in every 
situation. Automatic bandwidth selection methods can be 
divided into two categories: classical and plug in method.  
The accuracy of kernel smoothers is a function of the 

kernel  and the bandwidthh ; the precision depends 

mainly on the smoothing parameter  One of the most 

frequently used methods of bandwidth selection was 
introduced by Silverman (1986). The choice of bandwidth 
is crucial and is also a challenge. There are various 
methods for selecting bandwidth but there is no single best 
method. A common choice is the “Silverman’s rule of 
thumb” (Sheather and Jones, 1991 and Wand and 
Jones,1995) for an optimal bandwidth: 

     [ ] 5

1

349.1/),min(9.0
−

= nlQRshopt         (8) 

Where: s  is the sample standard deviation and IQR  is 

the interquartile range (0.75 quartile minus 0.25 quartile).  
In this case, the Gaussian and Epanechnikov Kernel were 
chosen and the unknown parameter h will be estimated by 

the optimal bandwidth opth  (Walter Zucchini, 2003). 

Wavelet denoising 
Wavelets are functions that satisfy certain requirements. 
The very name wavelet comes from the requirement that 
they should integrate to zero, “waving” above and below 

the axisx − . The diminutive connotations of wavelet 
suggest the function has to be well localized. Other 
requirements are technical and needed mostly to insure 
quick and easy calculation of the direct and inverse 
wavelet transform.  
For a wavelet denoising procedure, the discrete wavelet 
transform is used. The procedure consists of three steps: 
(1) a linear wavelet transform (2) the shrinkage denoising 
which gives the denoised wavelet transform (3) linear 
inverse wavelet transform which gives the denoised 
estimate of the original data.  In the first step, in order to 

obtain the vector of wavelet coefficientsw , the 1×T
vector of noisy dataχ  is multiplied by an appropriate 

TT ×  wavelet matrix W (whose elements depend on a 
specific wavelet family (e.g Daubechies, Asymentry, etc.). 

χWw =    (9) 

The vector of wavelet coefficients consists of different 

sub-vectors, each of length  
j2 ),...,1( Jj =  which 

represents different resolution levels of the data. For 
instance, a dyadic length time series with monthly 
sampling frequency, the first resolution level captures 
frequency variation with duration of 2 – 4 months. 
Analogously, the second resolution level captures 
variations of 4 – 8 months, the level 3 resolution capture 
variations of 8–16 months and so on, up to level J. Since 
the data contain measurement errors (noise), this will also 
be transferred to specific wavelet coefficients. Donoho and 
Johnson (1994, 1995a, b) proposed a soft thresholding rule 
in order to remove the noisy wavelet coefficients and 
construct noise free estimates of the original data vector. 
In the second stage, the following thresholding rule is 
applied to the data 
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τσ̂ is the standard deviation of the wavelet coefficients. 

This rule pushes all coefficients towards zero, but when 
their magnitude is smaller than the thresholdτ , which 
defines the level of noise in the data, they are set to zero; 

the resulting wavelet coefficients ŵ  are free from noise. 
In the third stage, the inverse of the wavelet transform is 
obtained in order to obtain noise free estimates of the 

original data vector χ   as follows: wW ˆˆ 1−=χ
   (10)   
with the property,   

  

Then (10) is, equivalent to: 

wW T ˆˆ =χ    (11) 

Polynomial spline denoising 

Let zixxxyx nii ∈<<< ,...);,( 21  be a sequence 

of observations, modelled by a relation )( ii xuY = , the 

smoothing spline estimate û  of the function  is defined 

to be the minimiser of  [ ] dxxuxuy
n

i

x

xii

n 2

1

2 )(ˆ)(ˆ
1

″
+−∑ ∫=

λ  

where λ   is a positive smoothing parameter which 
controls the amount of smoothing of the data and is 

defined between 0 and 1, 0=λ  produces least squares 

straight line fit to the data, while 1=λ  produces a 
piecewise cubic polynomial fit that passes through the data 

points. The smoothing parameter λ  is automatically 
selected in the “interesting range”. The interesting range of  

λ  is often near 



















+
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Where: h   is the average spacing of the data points 
(Hambers and Hastie, 1992). It is useful to think of fitting 

a smoothing spline û   in two steps: 

1) First, derive the values )( ixu
∧

ni ,...,1=  

2) From these values, derive )(xu  for all. 

 
Now treat the second step first. Given the vector 

)(, . . . ),( ni xuxum
∧∧∧

=  of fitted values, the sum of squares 

part of the spline criterion is fixed. It remains only to 

minimize dxxu
nx

x

2)("
1
∫

∧
,  and the minimizer is a natural 

cubic spline that interpolates the points ))(,( ii xux
∧

  This 

interpolating spline is a linear operator, and can be written 

in the form )()()( xfxuxu ii

n

i∑
∧∧

= , where )(xf i  are a 

set of spline basis functions. As a result, the roughness 

penalty has the form:
∧∧∧

=∫ mAmdxxu Tx

x

n 2)("
1

, where 

the elements of  A   are dxxfxf j

x

x i

n

)(")("
1
∫ The basis 

functions, and hence the matrix A  depend on the 

configuration of the predictor variables ix ,but not the 

responses iY   or m̂ . 

 
Now back to the first step. The penalized sum of squares 
can be written as; 

T
n

T YYwhereYmAmmY ),...,(,ˆˆˆ 1

2 =+− λ
Minimizing over m̂  gives .)(ˆ 1YAIm −+= λ  

 
Linearization of non-linear function 
The algorithm is based on Newton Raphson method of 
approximation. Let us consider (1), a nonlinear Cobb 
Douglas production model: 

 tttt uKLP += 32

1
βββ   (12) 

 

Let ),,,,( 321 βββKLf represent the function, then 

the nonlinear Cobb Douglas production function becomes:          

  tttt uKLfP += ),,,,( 321 βββ
 (13)

  

In Newton-Raphson method we find the values ofjβ that 

maximize a twice differentiable con- cave function, the 

objective function )(βg . In this method, we approximate

)(βg at 
tβ  by Taylor series expansion up to quadratic 

terms 

))(()(
2

1
))(()()( tttttt HGgg ββββββββββ −′−+−+≈

  

Where: 
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G

ββ
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)( is the Hessian matrix.  

 

The value of ttt KLP ,, have been observed and we 

must estimate ),,,( 321 βββ therefore equation 3.2 is re-

write as, tt uP += ),,( 321 βββ
        (14)
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This Hessian matrix is positive definite, the maximum of 

the approximation of )(βg  occurs when its derivative is 

zero 

0))(()( =−+ ttt HG ββββ      (15) 

[ ] )()(
1 ttt GH ββββ −−=      (16) 

This gives a way to compute
1+tβ , the next value in 

iterations, and is defined as; 

[ ] )()(
11 tttt GH ββββ −+ −=       (17) 

The iteration procedures continue until convergence is 
achieved. Near the maximum the rate of convergence is 

quadratic as defined by 
2

1
∧∧

+ −≤− t
t

t
t c ββββ for 

some 0≥c when 
t

iβ  is near 
∧

tβ  for all i.  Thus we get 

estimates 
t

iβ  by Newton Raphson methods. 

From the linearization result in equation (16) we can 

obtain estimate of 321 ,, βββ  as follow: 
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Once a parameter vector is obtained, the estimates are 
likely going to be better than the old trial estimates, and so 

can be used in place of  ),,( 0
3

0
2

0
1 βββ  which known 

as initial parameters and the computation can be done 
again. The iteration can continue obtaining new and better 
estimates until the difference between successive 
parameter vectors is small enough to assume convergence. 
Denoised non-linear regression estimators 
When the regressors in a non-linear regression model are 
subject to measurement errors, it becomes a problem to 
construct consistent estimators of the parameters. It is 
possible, however, to construct consistent estimators in a 
non-linear model like (1) by first applying the denoising 
techniques to the variables, then estimators like the least 
squares, least absolute deviation and M-estimator will be 
applied to these denoised variables  to yield consistent 
estimators which are called  
Denoised non-linear least squares (DNLS) 
Now consider the non-linear regression model  

tttt uKLfP += ),,,,( 321 βββ  nt , . . . ,1=       
(18) 

Where: ),,(., 321 βββf  is a non-linear function. 

Since the true values of tt KL ,  are unknown, the 

denoised variables 
*
2

*
1, tt xx  will replace 21   , tt xx  to 

get a denoised non-linear least squares (DNLS) estimator. 

The random errors tu are assumed to be uncorrelated and 

have mean 0 and unknown variance ��. The denoised 

least squares estimator of  ),,( 321 βββ   minimizes;  

3 ,2 ,1   )],,([ 2

1

*
2

*
1 =−=∑

=

ixxfyD i

n

t
tttn β      (19) 

 
Denoised least absolute deviation 
Least squares can be severely distorted by outlying 
observations which has led to the robust estimators that are 
unaffected by outlying observations. The least absolute 
deviation or �� method is a widely known alternative to 
the classical least squares or ��  method for statistical 
analysis of linear regression models. Instead of minimizing 
the sum of squared errors, it minimizes the sum of absolute 
values of errors. 
Still considering the non-linear regression model, since the 
true values of  

tt KL ,  are unknown, the denoised variables  

*
2

*
1, tt xx  will replace 21   , tt xx  to get a denoised non-

linear least absolute deviation estimator. The denoised 

least absolute deviation estimator of  ),,( 321 βββ   is 

   

∑
=

−=
n

t
itttn xxfyL

i 1

*
2

*
1 ),,(minarg β

β
    (20) 

Where: iβ is the solution of the parameters.  

 
Denoised M-estimator  
The least squares estimators of regression are known to be 
sensitive to outliers in the data. Robust estimators can be 
more efficient when the error distributions are non-
Gaussian and can reduce errors in the data. M-
estimators are a broad class of estimators, which are 
obtained as the minima of sums of functions of the data. 
M-estimators are arguably the most popular robust 

methods. To be more specific, M-estimator  nM  is 

considered as 

[ ]∑
=

−=
n

t
tttn xxfyM

i 1

*
2

*
1 ),,(minarg βρ

β
    (21) 

Where: �  is a loss function. The function ρ can be 

chosen in such a way to provide desirable properties of 
estimators (in terms of bias and efficiency) when the data 
are truly from the assumed distribution. Least-squares 

estimators are special M-estimators with
2)( xx =ρ , 

where           .   

 [ ]),,( *
2

*
1 ittt xxfPx β−=     (22) 

  
Simulation studies 
A Monte Carlo simulation is a problem solving techniques 
used to approximate the probability of certain outcomes by 
running multiple trials, using random variables. 
In this work, an extensive Monte Carlo simulations is 
conducted to generate random data of sample sizes 32, 256 
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and 1024 to examine the performance of the denoised 
nonlinear estimators from the model 

ttttttttt KxLxanduPy εδ +=+=+= 21 ,  (23) 

Where: )30,1(~ ULt , )200,10(~ UK t ,  

)25.0,0(~ Nut , )16.0,0(~ Ntδ  , 

)16.0,0(~ Ntε ,    tttt uxxy += 32

211
βββ   with 

standard parameter values 

)25,0,75.0,01.1( 321 === βββ , which 

were derived from the theory of production by Charles 
Cobb  and Paul Douglass with the following assumption: 

10,10,0 321 <<<<> βββ . 

 
Four (4) different smoothers (i.e Epanechnikov Kernel, 
Gaussian Kernel, Wavelet and polynomial spline are used 

to denoise the explanatory variables ( 21  and tt xx  ) 

under the three (3) different sample sizes (i.e 32, 256 and 
1024) and the new explanatory variables become

*
2

*
1  and tt xx . The regression model of the denoised data 

is fitted as: 

tttt uxxy += 32 *
2

*
11

βββ
 (24) 

 

Therefore, (24) is then applied to the estimators’ one after 
the other (i.e DNLS, DNLAD and DNM estimators). 
Sample sizes 32, 256, and 1024 are drawn repeatedly from 
the model (23). In each case,  the MSE of the estimators 
are computed to compare the performance of the denoised 
nonlinear estimators, i.e. the MSE of the denoised 
nonlinear least squares (DNLS) estimator, denoised 
nonlinear least absolute deviation (DNLAD) estimator and 
denoised nonlinear M- estimator from 1,000 Monte Carlo 
samples. The analysis is carried out using R statistical 
package and the simulation results are summarized in the 
numerical tables below.  
 
Results and Discussion  
From the result of the analysis, Table 1 show the 
bandwidth, h (smoothing parameter), chosen for the 
Epanechnikov and Gaussian kernel to denoise the 
variables. Also Table 2 present the average, initial values, 
expected parameter values, bias and standard error 
estimates of denoised nonlinear estimators under three 
different sample sizes for each smoother considered. From 
this Table, it can be observed that the estimated parameter 
values of the three denoised estimators are close to the true 
parameter values (β1=1.01, β2= 0.75, β3= 0.25). Therefore, 
the denoised nonlinear regression parameters are nearly 
unbiased. 
 

 
Table 1: The bandwidth h for the variables 

P L K 
32 256 1024 32 256 1024 32 256 1024 

6.0771 2.9976 2.7091 4.2229 2.2752 1.4539 19.3420 13.2814 9.3080 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Estimating Non–linear Regression Parameters… 
 

 FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; October, 2016 Vol. 1 No. 2  pp 527 - 533 
532 

Table 2: Denoise only explanatory variables 
Average expected parameter values, bias and standard error under Epanechnikov kernel smoother 

Sample size Parameters 
                  DNLS               DNLAD                        DNM 
β1 β2 β3 β1 β2 β3 β1 β2 β3 

32 Initial Value 
Estimates 
S.E 
Bias 

114.4507 -0.057427     1 
1.0192       0.7474     0.2501 
0.026         0.0057     0.004 
0.0092     -0.0026     0.0001 

114.4507 -0.057427     1 
1.0235        0.7456   0.2504 
 0.0364       0.0083   0.0055 
 0.0135      -0.0044   0.0004 

114.4507  -0.057427     1 
1.0192        0.7475      0.2500 
0.0291        0.0064      0.0045 
0.0087       -0.0022      0.0000 

256 Initial Value 
Estimates 
S.E 
Bias 

113.499  -0.015045     1 
1.0182       0.7478     0.2500 
0.0089        0.002      0.0014 
0.0082     -0.0022     0.0000 

113.499  -0.015045     1 
1.0211        0.7464   0.2503 
 0.0112       0.0027   0.0016 
 0.0112      -0.0036   0.0003 

113.499    -0.015045     1 
1.0178        0.7479      0.2500 
0.0104       0.0023       0.0016 
0.0078       -0.0021      0.0000 

1024 Initial Value 
Estimates 
S.E 
Bias 

113.952  -0.015896        1 
1.0182       0.7478     0.2500 
0.0044        0.001      0.0007 
0.0081     -0.0022     0.0000 

113.952  -0.015896        1 
1.0230        0.7458   0.2503 
 0.0055       0.0013   0.0008 
 0.0130      -0.0042   0.0003 

113.952  -0.015896        1 
1.0180        0.7478      0.2500 
0.0052       0.0012      0.0008 
0.0008       -0.0022      0.0000 

Average expected parameter values, bias and standard error under Gaussian kernel smoother 
32 Initial Value 

Estimates 
S.E 
Bias 

112.9249  -0.011786     1 
1.0148     0.7488     0.2500 
0.0257      0.0057     0.004 
0.0048      -0.0012    0.0000 

112.9249  -0.011786     1 
1.0183        0.7464   0.2509 
 0.0364       0.0083   0.0056 
 0.0083      -0.0036   0.0009 

112.9249  -0.011786     1 
1.0157        0.7488      0.2498 
0.0287        0.0064      0.0044 
0.0057       -0.0018      0.0002 

256 Initial Value 
Estimates 
S.E 
Bias 

113.8599  -0.015571     1 
1.0161        0.7483    0.2500 
0.0089        0.0020    0.0014 
0.0061       -0.0017    0.0001 

113.8599  -0.015571     1 
1.0191        0.7471   0.2502 
 0.0112       0.0027   0.0016 
 0.0091      -0.0029   0.0002 

113.8599  -0.015571     1 
1.0157        0.7485      0.2500 
0.0104        0.0023      0.0016 
0.0057       -0.0015      0.0000 

1024 Initial Value 
Estimates 
S.E 
Bias 

113.7859   -0.005594     1 
1.0169         0.7481   0.2500 
0.0044         0.0010   0.0007 
0.0069        -0.0019   0.0000 

113.7859   -0.005594     1 
1.0219         0.7461   0.2503 
 0.0055        0.0013   0.0008 
 0.0119       -0.0042   0.0003 

113.7859   -0.005594     1 
1.0168        0.7482      0.2500 
0.0052        0.0012      0.0008 
0.0068       -0.0022      0.0000 

Average expected parameter values, bias and standard error under Wavelet smoother 
32 Initial Value 

Estimates 
S.E 
Bias 

112.8807  -0.000928     1 
1.0112     0.7497     0.2500 
0.0261      0.0058     0.0041 
0.0012      -0.0013    0.0000 

112.8807  -0.000928     1 
1.0159        0.7476   0.2504 
 0.0363       0.0082   0.0055 
 0.0059      -0.0024   0.0004 

112.8807  -0.000928     1 
1.0107        0.7499      0.2500 
0.0285        0.0064      0.0044 
0.0007       -0.0001      0.0001 

256 Initial Value 
Estimates 
S.E 
Bias 

113.6514  -0.003086     1 
1.0107        0.7498    0.2500 
0.0089        0.0020    0.0014 
0.0007       -0.0002    0.0000 

113.6514  -0.003086     1 
1.0108        0.7488   0.2505 
 0.0117       0.0028   0.0017 
 0.0004      -0.0012   0.0005 

113.6514  -0.003086     1 
1.0109        0.7497     0.2500 
0.0103       0.0023      0.0016 
0.0009       -0.0013     0.0000 

1024 Initial Value 
Estimates 
S.E 
Bias 

113.5752  -0.005034     1 
1.0109         0.7497   0.2500 
0.0044         0.0010   0.0007 
0.0009        -0.0003   0.0000 

113.5752  -0.005034     1 
1.0160         0.7476   0.2503 
 0.0055        0.0013   0.0008 
 0.0060       -0.0026   0.0003 

113.5752  -0.005034     1 
1.0103        0.7498      0.2500 
0.0052        0.0012      0.0008 
0.0003       -0.0002      0.0000 

Average expected parameter values, bias and standard error under Polynomial spline smoother 
32 Initial Value 

Estimates 
S.E 
Bias 

114.1800  -0.019859     1 
1.0109     0.7497     0.2501 
0.0258      0.0058     0.0040 
0.0009    -0.0003    0.0001 

114.1800  -0.019859     1 
1.0155        0.7477   0.2501 
 0.0361       0.0083   0.0056 
 0.0055      -0.0023   0.0001 

114.1800  -0.019859     1 
1.0113        0.7496      0.2501 
0.0288        0.0064    -0.0044 
0.0013      -0.0004      0.0001 

256 Initial Value 
Estimates 
S.E 
Bias 

113.7807  -0.001800     1 
1.0108        0.7497    0.2500 
0.0088        0.0020    0.0014 
0.0008       -0.0003   0.0000 

113.7807  -0.001800     1 
1.0140        0.7483  0.2502 
 0.0117       0.0027  0.0016 
 0.0004      -0.0017  0.0002 

113.7807  -0.001800     1 
1.0107        0.7499     0.2500 
0.0103       0.0023      0.0016 
0.0004      -0.0001      0.0000 

1024 Initial Value 
Estimates 
S.E 
Bias 

113.4900  -0.011259     1 
1.0107         0.7498   0.2500 
0.0044         0.0010   0.0007 
0.0007       -0.0002   0.0000 

113.4900  -0.011259     1 
1.0161         0.7475   0.2503 
 0.0054        0.0013   0.0008 
 0.0061      -0.0025   0.0003 

113.4900  -0.011259     1 
1.0109        0.7497      0.2500 
0.0052        0.0012      0.0008 
0.0009       -0.0003      0.0000 

DNLS = Denoised nonlinear least squares; DNLAD = Denoised nonlinear least absolute deviation; DNM = denoised nonlinear M- estimator 
 
 
Tabe 3: Mean square error (Epanechnikov and Gaussian Kernel) 

Estimators Parameters 
Epanechnikov Kernel Gaussian Kernel 

32 256 1024 32 256 1024 
DNLS β1 0.0007606 0.0001465 0.0000866 0.0006835 0.0001164 0.0000670 

β2 0.0000393 0.0000088 0.0000058 0.0000339 0.0000069 0.0000046 
β3 0.0000160 0.0000020 0.0000005 0.0000160 0.0000020 0.0000005 

DNLAD β1 0.0015072 0.0002509 0.0001993 0.0013939 0.0002083 0.0001719 
β2 0.0000883 0.0000203 0.0000193 0.0000819 0.0000157 0.0000193 
β3 0.0000304 0.0000027 0.0000007 0.0000322 0.0000026 0.0000007 

DNM β1 0.0009225 0.0001690 0.0000910 0.0008562 0.0001407 0.0000733 
β2 0.0000458 0.0000097 0.0000063 0.0000442 0.0000075 0.0000063 
β3 .0000203 0.0000026 0.0000006 0.0000194 0.0000026 0.0000006 
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Table 4: Mean square error (Wavelet and Polynomial Spline) 

Estimators Parameters 
Wavelet Polynomial Spline 

32 256 1024 32 256 1024 
DNLS β1 0.0006827 0.0000797 0.0000202 0.0006665 0.0000781 0.0000204 

β2 0.0000353 0.0000040 0.0000011 0.0000337 0.0000041 0.0000011 
β3 0.0000168 0.0000020 0.0000005 0.0000160 0.0000020 0.0000005 

DNLAD β1 0.0013525 0.0001371 0.0000663 0.0013335 0.0001212 0.0000664 
β2 0.0000730 0.0000093 0.0000085 0.0000742 0.0000102 0.0000139 
β3 0.0000304 0.0000031 0.0000007 0.0000315 0.0000026 0.0000007 

DNM β1 0.0008127 0.0001069 0.0000271 0.0008311 0.0001066 0.0000279 
β2 0.0000410 0.0000070 0.0000015 0.0000411 0.0000053 0.0000015 

β3 0.0000194 0.0000026 0.0000006 0.0000194 0.0000026 0.0000006 

 
 
Tables 3 and 4 show the estimated mean squared errors 
(MSE) of the denoised nonlinear estimators (DNLS, 
DNLAD and DNM) under the three (3) sample sizes. 
When the MSE under Epanechnikov, kernel, Gaussian 
kernel Wavelet and Polynomial spline smoothers are 
compare, it is obvious that DNLS is the best under the 
three sample sizes considered and at the same time the 
denoised estimators perform better under large sample size 
(1024). 
 
Conclusion 
This study estimate non-linear regression parameters under 
different sample sizes. The Epanechnikov Kernel, 
Gaussian Kernel, Wavelet and Polynomial Spline 
smoothers are used to denoise only the explanatory 
variables under the three (3) different sample sizes (i.e. 32, 
256, and 1024). The performance of the denoised 
nonlinear estimators is compared based on the mean 
squared error criteria to determine their efficiency. The 
simulation studies carried out for sample sizes 32, 256,and 
1024 with 1,000 Monte Carlo samples, show that the 
denoised nonlinear least squares (DNLS) estimator which 
has the smallest MSE is the best (most efficient) estimator 
among all the three (3) denoised nonlinear estimators 
under the four smoothers considered. Besides, the 
denoised nonlinear estimators (i.e. DNLS, DNLAD and 
DNM) performed better under the large sample size 1024. 
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