ESTIMATING NON-LINEAR REGRESSION PARAMETERS
USING DENOISED VARIABLES
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Abstract:

The observed data from various fields are freqyestthracterized by measurement error and this ées b

challenging problem to constructing consistentnestors of the parameters in a nonlinear regressiotel.
In the study, simulated data under three (3) samsjdes (i.e. 32, 256 and 1024) were used, applying
Epanechnikov kernel, Gaussian kernel, Wavelet aiighBmial Spline on noisy data. The study reveale
performances of denoised nonlinear estimators udifferent sample sizes and comparison was maa usi
the mean squared error criterion. The result ofstivelies showed that the denoised nonlinear lepstres
estimator (DNLS) is the best under each samplecaimsidered.
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Introduction

Statistical estimation can be regarded as a sdbfiél
statistics, and lies at the core of a number ohsref
science and engineering, including data mining, sigdal

1990), medicine and biology (Aldroubi and Unser9@p
and image processing (Prasad and Lyengar, 1997).
Measurement errors in the independent variabldmedr
regression models lead to inconsistent coefficient

processing. Each of these disciplines provides somestimates. To overcome this inconsistency probleanym

information on how to model data and how best tol@k
the hidden structure of the model of interest.hiis tvork,
we are interested in estimating nonlinear regressiodel
(Nonlinear Cobb- Douglas production model). In noedr
regression, observational data are modeled by etifum
which contains parameters that are not linear iturea
The data consist of independent variables (expbapat
variables) and their

studies on denoisinghas been extended to leastresqua
estimator, least absolute deviation estimator and M
estimator using kernel, wavelet and polynomial replas
smoothers. The study carried out by Ghial. (2000)
denoised both the dependent and explanatory vesabl
while Cui et al. (2002) suggested denoising only the
explanatory variables. Furthermore, a series ofepap

associated observed dependerf¥ou and Zhou, 2007; Yoet al., 2009; Zhou and Liang,

variables (response variables) which may contain2009) adopted the approach of only denoising exbtay

measurement error or noise.
Variables are said to be noisy if they are not mesas

variables. Cukt al. (2010) denoised only the explanatory
variables and showed that the denoised nonlineast le

correctly because the measurement system genemating squares estimator is not robust to outliers. Thelyst

not perfect. In statistics, an error is not a nkisthecause
variability is an inherent part of things being rmei@d and

carried out by Fasoranbaku and Soyonbo (2015) sthowe
that the denoised nonlinear least square estimatder

of the measurement process. Error-in-variables YEIV the several smoothers (Epanechnikov, Gaussian, letave

model are regression models that account for measnt
errors in independent variables. Many economic data

and polynomial spline) considered outperforms bbb
denoised nonlinear least absolute deviation estimad

are contaminated by the mismeasured variables. Theonlinear M-estimator. Soyombo and Fasoranbaku5R01
problem of measurement errors is one of the moshlso used the known Epanechnikov Kernel smootleer, t

fundamental problems in empirical economics.

Theperform the denoising procedures, carry out sinandat

presence of measurement errors causes biased astlidies under some settings to determine the pesioce

inconsistent parameter estimates and leads to emusn
conclusions to various degrees in economic analysis
measurement error is called classical if it is peledent of
the latent true values; otherwise it is called wtassical.
There have been many studies on the identificatiot
estimation of linear, nonlinear, and even non patam
model with classical measurement errors (Cheng\aard
Ness, 1999; Carroét al., 2006).

A natural approach to overcome this problem isgpla
the smoothing techniques to handle the data fopero
removal of the noisy observation (i.e. denoiseda). In
statistics and image processing, to smoothen asgdia to
create an approximating function that attempt tptuwa
important patterns in the data, while leaving ooisa or
other fine scale structure or rapid phenomena. $mgp
extracts more information from the data as longthes

of the denoised non-linear estimators when therpeter
values are varied. The results shiwvat parameters of non-
linear model are not sensitive and thus have necefin
the performance of denoised non-linear estimators.

For the purpose of estimating the error model, shisly
investigate Cobb Douglas production model in ecossmi
The model with additive error is written as:

P =BL"%K” +y, M
(8.>0), (0<B, <D, (0<pB,<I

Where: Pt is output at time t (the real value of all goods

produced in a period of time)

L. is the Labour input (the number of person hoursin
period of time), Kis the Capital input (the real value of
Machinery and Building)B; is a Constant, (total factor

assumption of smoothing is reasonable and providegoqyctivity), g, andps are the output elasticity of Labour

flexible and robust analysis. There are severahou of

smoothing techniques which can be used to screén o

and Capital (measure the respective contributiob; ahd

¥, to the production process) ang is the stochastic

noise, such as: wavelets, developed by Donoho angisturbance term

Johnstone, (1994, 1995a and 1995b). Other methads a

kernel, polynomial spline, etc. These appear often

Suppose thaf(L,,K,, P, ):1<t < n} are unobservable

applied fields such as marketing (Blattberg and iNgsl “true” variables satisfying a nonlinear relatiornshi
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i 2
measurements of(Lt , Kt , Pt) are collected to yield an i Gaussian Kernelk(u) - ex;{—u] )
observable data set §{ X, X, ¥, ) :1st<n} ie. N2 2
the true variables plus additive measurement esoch ~ 1he problem of selecting the smoothing parameter fo
that: kernel estimation has been explored by many autiiods

_ _ _ no procedure is yet been considered the best inyeve
Xa =L +0. x,=K +gandy, =R +u, (2 situation. Automatic bandwidth selection methods ba

Where O. and €. are measurement errors. divided into two categories: classical and plugnigthod.
! ! The accuracy of kernel smoothers is a function haf t

To be in line with the usual nonlinear model, thedel (1) kernel K and the bandwidth : the precision depends

becomes:
y, = 'letlﬂzxtzﬁs +u 3) mainly on the smoothing parametlix One of the most
t t

frequently used methods of bandwidth selection was
introduced by Silverman (1986). The choice of baidthv

is crucial and is also a challenge. There are wuario
methods for selecting bandwidth but there is nglsibest
method. A common choice is the “Silverman’s rule of
humb” (Sheather and Jones, 1991 and Wand and
ones,1995) for an optimal bandwidth:

In estimating denoised non-linear regression patensie
the effect of the sample sizes on denoised estidias
not been considered. Therefore, this study woulgleyn
three different denoised estimators (i.e denoisedlmear
least square (DNLS), denoised non-linear absolut
deviation (DNLAD), and denoised non-linear moment N
(DNM)) to estimate non-linear regression parameters . -z

under three different sample sizes (32, 256, a@d )10 he hp = 0.9[m|n(s,IQRi /134 ° (®)

goal of this study is to provide best estimatoremeach  \ypere: s is the sample standard deviation ah@R is
sample size for particular smoothers.

the interquartile range (0.75 quartile minus 0.Q&rtjle).
Materials and M ethods In this case, the Gaussian and Epanechnikov Kevasg
Denoising procedures chosen and the unknown parameter h will be estanaye

The basic idea behind smoothing a data set isrégion  the optimal bandwidtH’1opt (Walter Zucchini, 2003).
of an approximating function that attempts to ceptu

important patterns in the data while leaving owt tivise, Wavelets are functions that satisfy certain reqoéets.

and is also referred to as “denoising’. There arHous The very name wavelet comes from the requiremeatt th

methods to help restore a data set from measureme . 1o i g
noise. In this study, the following smoothing methare ﬂ%ey should integrate to zero, “waving” above amibty

used theX —axis. The diminutive connotations of wavelet
Kernel denoising suggest the function has to be well localized. ©the
In this section, the denoising kernel-type smogghin requirements are technical and needed mostly torens
procedure is considered. First, only th¢variable is duick and easy calculation of the direct and ingers

denoised. Therefore Kernel-type smoothing procedure Wavelet transform. .
For a wavelet denoising procedure, the discreteeleav

Wavelet denoising

the X; using a weight function is transform is used. The procedure consists of tkteps:
1 x— X (1) a linear wavelet transform (2) the shrinkagaadging
w(x, h) =Zk( j which gives the denoised wavelet transform (3) dine
nh 1= h @) inverse wavelet transform which gives the denoised

estimate of the original data. In the first steporder to

) obtain the vector of wavelet coefficiems, the T X1
supported on [-1,1] Withle(X)dx=1 for some vector of noisy datg’ is multiplied by an appropriate

To this end, let k(;)ZObe a symmetric kernel

smoothing parameteh ; where X is the value of the 1 XT wavelet matrixW (whose elements depend on a
specific wavelet family (e.g Daubechies, Asymengtg, ).
w=Wy )
are the values of that variable in the dafais a function  The vector of wavelet coefficients consists of efiéint
of a single variable called théernel. The kernel i _
determines thehape of the function. The parametéris ~ Sub-vectors, each of length2' (j =1,...,J) which
called the bandwidth or smoothing constant dhig the  represents different resolution levels of the ddfar
sample size. It is important to note that the baddw instance, a dyadicength time series with monthly
strongly depends on the sample size, so when saigde sampling frequency, the first resolution level caps
increases, the bandwidth tends to shrink. The batidw frequency variation with duration of 2 — 4 months.
controls the degree of smoothing and adjusts theeand  Analogously, the second resolution level captures

scalar variable for which one seeks an estimatéev\b(i

form of the function. variations of 4 — 8 months, the level 3 resolutgapture
x— X variations of 8-16 months and so on, up to lev8idce

Also, U= ! (5) the data contain measurement errors (noise), tiligiso
( h j be transferred to specific wavelet coefficientsnBloo and

For the purpose of this study, the two most kermels J0hnson (1994, 1995a, b) proposed a soft threstwpidie
utilized in order to remove the noisy wavelet coefficientsd a

i. Epanechnikov kernel: construct noise free estimates of the original detztor.

' ’ In the second stage, the following thresholdinge rid
— 2

K(u) = 075L-u")l gy on ub L) 6)  appiied to the data
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sgniv(wW-7), if |w=7
0, if wsr
+1 if

O
cubic spline that interpolates the poir(tg ,u(x;)) This
interpolating spline is a linear operator, and banwritten
) o 0
in the form u(x) = Zi u(x ) f, (x) . where f.(X) are a
set of spline basis functions. As a result, theghmess

w>0

Where: w=0

w<0

— i 0 o u|
sgniw) =4 0 if penalty has the fornj‘:Xn u"(x)2dx =m" Am, where
-1 if b

the elements of A arer" f,"(X) fj"(X)dXThe basis
X

functions, and hence the matrixd depend on the

r =, (2log(n)}

~ o . configuration of the predictor variableX; ,but not the
O, is the standard deviation of the wavelet coeffitsen

This rule pushes all coefficients towards zero, Wwhen
their magnitude is smaller than the threstiold which
defines the level of noise in the data, they atemeero;

the resulting wavelet coefficientdV are free from noise.
In the third stage, the inverse of the waveletgfam is

responsesy; or M.

Now back to the first step. The penalized sum afasgs
can be written as;

Y =&{” + A" A, whereY = (Y,,....Y,)"

obtained in order to obtain noise free estimateshef A . 4
Minimizing over M givesm= (I + AA) Y.

original data vectorY as follows: )?=W_1W
ith th " (10) Linearization of non-linear function
Wi _reproper yj 1 T The algorithm is based on Newton Raphson method of
Ww' =1, Le W "=W". approximation. Let us consider (1), a nonlinear I€ob
Then (10)is, equivalent to: Douglas production model:
F=WTw (11) P =BL*KA +y, (12)

Polynomial spline denoising

Let (X, Y;);% <X, <...<X,,i JZ be asequence et f(L,K,SB,,[3,,05;) represent the function, then

the nonlinear Cobb Douglas production function lnees:

of observations, modelled by a relatidh = U(X;) , the
P =1f(L.K.B.B B) +u

smoothing spline estimatd of the functiont is defined

"

to be the minimiser of ™" [y _(x )]’ +)|J‘x"0 (x)2dx
=1k ! X

(13)

In Newton-Raphson method we find the valueﬁ?that

where A is a positive smoothing parameter which maximize a twice differentiable con- cave functighe
controls the amount of smoothing of the data and isobjective functiorg(/£3) . In this method, we approximate
defined between 0 and ) = O produces least squares
straight line fit to the data, whiledA =1 produces a
piecewise cubic polynomial fit that passes throtighdata
points. The smoothing parameted is automatically
selected in the “interesting range”. The intereptenge of

g(B) at B' by Taylor series expansion up to quadratic
terms

9(B) = g(ﬁt)+G(ﬁt)(ﬁ—/3‘)+%(/3—ﬁt)'H(ﬁt)(ﬂ—ﬂ‘)

Where: G(3') =[;—g} is the score vector and
ﬁt

A isoften neay 1
h3
+7

Where h
(Hambers and Hastie, 1992). It is useful to thifkitting

a smoothing spliné] in two steps:

6 62
is the average spacing of the data points H (,Bt) = {—g} is the Hessian matrix.
aﬁi aﬁk B

_ _ 0 . The value of P, L,, K, have been observed and we
1) First, derive the valuas(x;) I =1,...,n

must estimat o, , therefore equation 3.2 is re-
2) From these values, deri\lé(X) for all. 6('81 '82 '83) a

write as, Pt = (ﬂl’ﬂZ'lBS) U,

14
Now treat the second step first. Given the vector (14)
o o O ’
m=u ),...,u(x,) of fitted values, the sum of squares 0S 0S 0S
part of the spline criterion is fixed. It remainsly to G(B )= (’B), (B) , (B)
minimize J'x" S"(X)de, and the minimizer is a natural 6181 6182 6183
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92S(B) 9*S(B) 3%S(B) i where: f(.,5,,5,,0;) is a non-linear function.
08% '0P0B, 08,005, Since the true values ol, K, are unknown, the
H(B ) = 0°S(B) 9°S(B) 9°S(B) denoised variable@(:l,xf2 will replace X, , X, to
6,316,32 ! 6,322 ! aﬂzaﬂg get a denoised non-linear least squares (DNLShastr.
) ) ) The random errorél, are assumed to be uncorrelated and
0°S(h) ,6 S(B) ’6 S(B) have mean 0 and unknown variancé The denoised
| 08,08, 083,005, 0B, i least squares estimator {i3;, B,, f;) minimizes;

This Hessian matrix is positive definite, the mantim of n . . 5 .
the approximation ofg(3) occurs when its derivative is D, = Z[yt ~ T X287 1=123  9)
=]

zZero

G(BHY+H(BHYB-B)=0 (15) Denoised least absolute deviation
a1 Least squares can be severely distorted by outlying
B=B" - [H (B )] G(8') (16) observations which has led to the robust estimatatsare
o 41 _unaffected by outlying observations. The least hieo
This gives a way to compu , the next value in  geviation orL, method is a widely known alternative to

iterations, and is defined as; the classical least squares by method for statistical
t+1 _ ot iy L ¢ analysis of linear regression models. Instead ofmizing
,8 - ,8 - [H (,8 )] G(,B ) @an the sum of squared errors, it minimizes the suwbsblute

The iteration procedures continue until convergeige Vvalues of errors.
achieved. Near the maximum the rate of convergémce Still considering the non-linear regression modgice the
012 true values of L,.K, are unknown, the denoised variables
B =B
t

for

O
quadratic as defined b%ﬁ“l_lgt <c

X:l,)(:2 will replace X, , X, to get a denoised non-
>0 ﬁt ) g ] linear least absolute deviation estimator. The deub
some €2 Qwhen /5, is near 5, foralli. Thus we get .o peqiute deviation estimator 48, 5,.6;) is

t
estimates,Bi by Newton Raphson methods.

. . . . . n
From the- linearization result in equation (16) wanc Ln =argmin2‘yt _ f()(:11)(:21/[gi) (20)
obtain estimate o3, 3,, B; as follow: A =
_625(,8) 9?S(B) 0°S(B) 1 [0s(B) | Where: [, is the solution of the parameters.
°| | aB% "0B9B, B0 0B
A ,310 _ 2’8 ' 'Lzl A '62’1 A 3 ’ Denoised M-estimator
By |=| B2 | | 9°S(B) 9°S(B) 9°S(P) 98(B) The least squares estimators of regression arerktmie
B.| | B°| |0BaB, " 0B,2 0B,98, 98, sensitive to outliers in the data. Robust estimatars be
FIS more efficient when the error distributions are non
028(,8)1028([?)’628(/3’) # Gaussian and can reduce errors in the data. M-
0803, 08,08, 3B, L 95 ] estimators are a broad class esfimators which are
L s

obtained as the minima of sums of functions of daéa.

Once a parameter vector is obtained, the estimates M-éstimators are arguably the most popular robust
likely going to bebetter than the old trial estimates, and somethods. To be more specific, M-estimatoiV n is

can be used in place o B, B, B2) which known  considered as

as initial parameters and the computation can heedo _ s [ ok ]

again. The iteration can continue obtaining new laettier M, = afgmﬁ'”zp Y~ f(xtl’XIZ'ﬂ) (21)
estimates until the difference between successive oo ) )

parameter vectors is small enough to assume coeweeg  VWhere: p is a loss function. The functio0 can be
Denoised non-linear regression estimators chosen in such a way to provide desirable propeuie
When the regressors in a non-linear regression havde  estimators (in terms of bias and efficiency) whee tata
subject to measurement errors, it becomes a probdem are truly from the assumed distribution. Least-sgsia
construct consistent estimators of the parametérss
possible, however, to construct consistent estirgato a
non-linear model like (1) by first applying the aésing  here :

techniquedo the variables, then estimators like the least X = |_Pt - f(x:l, x:z,ﬁi )] (22)
squares, least absolute deviation and M-estimaiibrbe
applied to these denoised variables to yield cbest
estimators which are called

Denoised non-linear least squares (DNLS)

Now consider the non-linear regression model

estimators are special M-estimators witfX) = X,

Simulation studies

A Monte Carlo simulation is a problem solving teahugs
used to approximate the probability of certain oates by
running multiple trials, using random variables.

R= f (Lt K, 'ﬁl'ﬁZ'ﬂS) +tu, t= 1..,n (18 In this work, an extensive Monte Carlo simulatioss i
conducted to generate random data of sample sZe258
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and 1024 to examine the performance of the denoised@herefore, (24) is then applied to the estimators® after

nonlinear estimators from the model the other (i.e DNLS, DNLAD and DNM estimators).

y, =P +u, and x,=L +J,, Xx,=K, +¢& (23) Sample sizes 32, 256, and 1024 are drawn repedtediy
the model(23). In each case, the MSE of the estimators

Where: L, ~U (130), K, ~U (0200, are computed to compare the performance of theisiemho
nonlinear estimators, i.e. the MSE of the denoised
u, ~ N (0’023: 5t ~N (010-16) J nonlinear least squares (DNLS) estimator, denoised

_ B, B ) nonlinear least absolute deviation (DNLAD) estinnatnd
&~ N (0016), Vi = lBl)(tl X~ tU  with denoised nonlinear M- estimator from 1,000 Montel€ar
standard parameter values samples. The analysis is carried out using R ftatis

— — — . package and the simulation results are summarizetlel
(5, =101, B, =075 ;= 029, which numerical tables below.

were derived fromthe theory of production by Charles
Cobb and Paul Douglass with the following assunmptio Results and Discussion

ﬁl >0, 0<'32 <] 0<ﬂ3 <1. From the result of the analysis, Table 1 show the
bandwidth, h (smoothing parameter), chosen for the
Epanechnikov and Gaussian kernel to denoise the
variables. Also Table 2 present the average, inrdfues,
expected parameter values, bias and standard error
to denoise the explanatory variable¥X(andX, ) estimates of denoised nonlinear estimators undeeth
under the three (3) different sample sizes (i.e288, and dlfferent sample sizes for each smoother gonS|deﬁRﬂn
1024) and the new explanatory variablémcome this Table, it can be observed that the estimatedmeter
values of the three denoised estimators are otofeettrue
th al”ldXt2 The regression model of the denoised dataparameter value${=1.01,p,= 0.75,B;= 0.25). Therefore,
is fitted as: the denoised nonlinear regression parameters adyne

,8 *[;2 By +u unbiased.
1 t (24)

Four (4) different smoothers (i.e Epanechnikov kérn
Gaussian Kernel, Wavelet and polynomial splineused

Table 1. The bandwidth h for the variables

P L K
32 256 1024 32 256 1024 32 256 1024
6.0771 2.9976 2.7091 4.2229 2.2752 1.4539 19.3420 3.2814 9.3080
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Table 2: Denoise only explanatory variables

Average expected parameter values, biasand standard error under Epanechnikov kernel smoother

. DNLS DNLAD DNM
Samplesize Parameters . , B, : B, B, . B, B
32 Initial Value 114.4507 -0.057427 1  114.4507 -0.057427 1  114.4507 -0.057427 1
Estimates 1.0192 0.7474 0.25011.0235 0.7456 0.2504 1.0192 0.7475 0.2500
S.E 0.026 0.0057 0.004 0.0364 0.0083 0.0055 0.0291 0.0064 0.0045
Bias 0.0092 -0.0026 0.0001 0.0135 -0.0044 0.0004 0.0087 -0.0022  0.0000
256 Initial Value 113.499 -0.015045 1 113.499 -0.015045 1 113.499 -0.015045 1
Estimates 1.0182 0.7478 0.25001.0211 0.7464 0.2503 1.0178 0.7479 0.2500
S.E 0.0089 0.002 0.0014 0.0112 0.0027 0.0016 0.0104 0.0023 0.0016
Bias 0.0082 -0.0022 0.0000 0.0112 -0.0036 0.0003 0.0078 -0.0021 0.0000
1024 Initial Value 113.952 -0.015896 1 113.952 -0.015896 1 113.952 -0.015896 1
Estimates 1.0182 0.7478 0.25001.0230 0.7458 0.2503 1.0180 0.7478  0.2500
S.E 0.0044 0.001  0.0007 0.0055 0.0013 0.0008 0.0052 0.0012  0.0008
Bias 0.0081 -0.0022 0.0000 0.0130 -0.0042 0.0003 0.0008 -0.0022 0.0000

Aver age expected parameter values, biasand standard error under Gaussian kernel smoother
112.9249 -0.011786 1
0.7464 0.2509 1.0157
0.0083 0.0056 0.0287
-0.0036 0.0009 0.0057
113.8599 -0.015571 1
0.7471 0.2502 1.0157
0.0027 0.0016 0.0104
-0.0029 0.0002 0.0057
1 113.7859 -0.005594 1
0.7461 0.25031.0168
0.0013 0.00080.0052
-0.0042 0.00030.0068

32 Initial Value 112.9249 -0.011786 1
Estimates 1.0148 0.7488 0.2500 1.0183
S.E 0.0257 0.0057 0.004 0.0364
Bias 0.0048 -0.0012 0.0000 0.0083
256 Initial Value  113.8599 -0.015571 1
Estimates 1.0161 0.7483 0.25001.0191
S.E 0.0089 0.0020 0.0014 0.0112
Bias 0.0061 -0.0017 0.0001 0.0091
1024 Initial Value 113.7859 -0.005594
Estimates 1.0169 0.7481 0.25001.0219
S.E 0.0044 0.0010 0.0007 0.0055
Bias 0.0069 -0.0019 0.0000 0.0119

1 113.7859 -0.005594

Aver age expected parameter values, biasand standard error under Wavelet smoother

32 Initial Value 112.8807 -0.000928 1
Estimates 1.0112 0.7497 0.2500 1.0159
S.E 0.0261 0.0058 0.0041 0.0363
Bias 0.0012 -0.0013 0.0000 0.0059
256 Initial Value 113.6514 -0.003086 1
Estimates 1.0107 0.7498 0.25001.0108
SE 0.0089 0.0020 0.0014 0.0117
Bias 0.0007 -0.0002 0.0000 0.0004
1024 Initial Value 113.5752 -0.005034 1
Estimates 1.0109 0.7497 0.25001.0160
S.E 0.0044 0.0010 0.0007 0.0055
Bias 0.0009 -0.0003 0.0000 0.0060

32 Initial Value 114.1800 -0.019859 1
Estimates 1.0109 0.7497 0.2501 1.0155
S.E 0.0258 0.0058 0.0040 0.0361
Bias 0.0009 -0.0003 0.0001 0.0055
256 Initial Value 113.7807 -0.001800 1
Estimates 1.0108 0.7497 0.25001.0140
S.E 0.0088 0.0020 0.0014 0.0117
Bias 0.0008 -0.0003 0.0000 0.0004
1024 Initial Value 113.4900 -0.011259 1
Estimates 1.0107 0.7498 0.25001.0161
S.E 0.0044 0.0010 0.0007 0.0054
Bias 0.0007 -0.0002 0.0000 0.0061

112.8807 -0.000928 1
0.7476 0.2504 1.0107
0.0082 0.0055 0.0285
-0.0024 0.0004 0.0007
113.6514 -0.003086 1
0.7488 0.2505 1.0109
0.0028 0.0017 0.0103
-0.0012 0.0005 0.0009
113.5752 -0.005034 1
0.7476 0.25031.0103
0.0013 0.00080.0052
-0.0026 0.00030.0003
Average expected parameter values, biasand standard error under Polynomial spline smoother
114.1800 -0.019859 1
0.7477 0.2501 1.0113
0.0083 0.0056 0.0288
-0.0023 0.0001 0.0013
113.7807 -0.001800 1
0.7483 0.2502 1.0107
0.0027 0.0016 0.0103
-0.0017 0.0002 0.0004
113.4900 -0.011259 1
0.7475 0.25031.0109
0.0013 0.00080.0052
-0.0025 0.0003 0.0009

112.9249 -0.011786 1

0.7488  0.2498
0.0064  0.0044
-0.0018  0.0002

113.8599 -0.015571 1

0.7485  0.2500
0.0023  0.0016
-0.0015  0.0000

0.7482  0.2500
0.0012  0.0008
-0.0022  0.0000

112.8807 -0.000928 1

0.7499  0.2500
0.0064  0.0044
-0.0001  0.0001

113.6514 -0.003086 1

0.7497  0.2500
0.0023  0.0016
-0.0013 0.0000

113.5752 -0.005034 1

0.7498  0.2500
0.0012  0.0008
-0.0002  0.0000

114.1800 -0.019859 1

0.7496  0.2501
0.0064 -0.0044
-0.0004  0.0001

113.7807 -0.001800 1

0.7499 0.2500
0.0023 0.0016
-0.0001  0.0000

113.4900 -0.011259 1

0.7497  0.2500
0.0012  0.0008
-0.0003  0.0000

DNLS = Denoised nonlinear least squares; DNLAD =nd@iged nonlinear least absolute deviation; DNM raiged nonlinear M- estimator

Tabe 3: Mean sguare error (Epanechnikov and Gaussian Kernel)

Epanechnikov Kernel

Gaussian Kernel

Estimators Parameters

32 256 1024 32 256 1024
DNLS B1 0.0007606 0.0001465 0.0000866 0.0006835 0.0001164 .0000670
B2 0.0000393 0.0000088 0.0000058 0.0000339 0.00000690.0000046
B3 0.0000160 0.0000020 0.0000005 0.0000160 0.00000200.0000005
DNLAD B1 0.0015072 0.0002509 0.0001993 0.0013939 0.0002083 .0000719
B2 0.0000883 0.0000203 0.0000193 0.0000819 0.00001570.0000193
B3 0.0000304 0.0000027 0.0000007 0.0000322 0.00000260.0000007
DNM B1 0.0009225 0.0001690 0.0000910 0.0008562 0.0001407 .0000733
B2 0.0000458 0.0000097 0.0000063 0.0000442 0.00000750.0000063
B3 .0000203 0.0000026 0.0000006 0.0000194 0.0000026 .0000006
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Table4: Mean squareerror (Wavelet and Polynomial Spline)

. Wavelet Polynomial Spline
Estimators ~ Parameters 2 256 1024 2 256 1024
DNLS B1 0.0006827 0.0000797 0.0000202 0.0006665 0.0000781 .0000204
B2 0.0000353 0.0000040 0.0000011 0.0000337 0.00000410.0000011
Bs 0.0000168 0.0000020 0.0000005 0.0000160 0.00000200.0000005
DNLAD B1 0.0013525 0.0001371 0.0000663 0.0013335 0.0001212 .0000664
B2 0.0000730 0.0000093 0.0000085 0.0000742 0.00001020.0000139
Bs 0.0000304 0.0000031 0.0000007 0.0000315 0.00000260.0000007
DNM B1 0.0008127 0.0001069 0.0000271 0.0008311 0.0001066 .0000279
B2 0.0000410 0.0000070 0.0000015 0.0000411 0.00000530.0000015
Bs 0.0000194 0.0000026 0.0000006 0.0000194 0.00000260.0000006

Tables 3 and 4 show the estimated mean squarets erroCui HJ, He XM & Zhu LX 2002. On regression estimator
(MSE) of the denoised nonlinear estimators (DNLS, with denoised variablesSatistical Sinica, 12: 1191-
DNLAD and DNM) under the three (3) sample sizes.  1205.

When the MSE under Epanechnikov, kernel, Gaussiafrasoranbaku OA & Soyombo AO 2015. A comparative
kernel Wavelet and Polynomial spline smoothers are study of the performance of denoised non-linear

compare, it is obvious that DNLS is the best uniher regression estimators under different smoothers.

three sample sizes considered and at the samethiene Gonin R & Money AH 1989.Nonlinear Ptnorm

denoised estimators perform better under large sasipe Estimation. Marcel Dekker, New York, p. 34.

(1024). Green PJ & Silverman BW 1994. Non Parametric
Regression and Generalized Linear Models: A

Conclusion Roughness Penalty Approach. Chapman and Hall.

This study estimate non-linear regression parameteder Hastie TJ & Tibshirani RJ 1990Generalized Additive
different sample sizes. The Epanechnikov Kernel, Models. Chapman and Hall.

Gaussian Kernel, Wavelet and Polynomial SplineHossain M, Majumder A & Basak T 2012. An application
smoothers are used to denoise only the explanatory of non-linear cobb-douglas production function to
variables under the three (3) different sampless{ze. 32, selected manufacturing industries in Banglad&xien
256, and 1024). The performance of the denoised J. Sat., 2(4): 460-468.

nonlinear estimators is compared based on the meadennrich RJ 1969. Asymptotic properties of nonlirieast
squared error criteria to determine their efficienghe squares estimatorAnn. Math. Stat., 40: 633-643.
simulation studies carried out for sample sizes288,and  Keynes JM 1936The General Theory of Employment,
1024 with 1,000 Monte Carlo samples, show that the Interest and Money.

denoised nonlinear least squares (DNLS) estimatochw Prasad L & Lyengar SS 199TVavelet Analysis with
has the smallest MSE is the best (most efficiestijretor Application to Image Processing. CRC Press, Florida.
among all the three (3) denoised nonlinear estimato Seber GAF & Wild CJ 1989. Nonlinear regressibm. J.
under the four smoothers considered. Besides, the Adv. Scientific and Technical Res., 5(3): 86. Available
denoised nonlinear estimators (i.e. DNLS, DNLAD and online: http://www.rspublication.com/ijst/index.html

DNM) performed better under the large sample sl rspublicationhouse@gmail.com
Soyombo AO & Fasorobaku OA 2015. Non-linear model:
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